ELISA, CLIPS and LIA NIST 2003 segmentation

ELISA consortium = CLIPS and LIA for RT

CLIPS Grenoble (Fr)

Daniel Moraru Laurent Besacier

LIA Avignon (Fr)

Sylvain Meignier Corinne Fredouille Jean-Francois Bonastre

Outline

- Segmentation component overview
- Acoustic segmentation
- Speaker segmentation
 - CLIPS approach
 - I LIA approach
- Speaker re-segmentation
- ELISA collaboration
 - Merged system
 - Piped system
- Results

Segmentation component overview

- Based on acoustic pre-segmentation
- Speaker segmentation
 - **■** LIA
 - □ based on HMM
 - Re-segmentation at the end
 - CLIPS
 - □ BIC detector
 - based on hierarchical clustering
 - **I ELISA**
 - ⊢ Piped
 - Acoustic pre-seg. → CLIPS speaker Seg → LIA re-segmentation
 - ⊢ Merged
 - Merging of 4 speaker segmentation systems → LIA re-segmentation

ELISA-CLIPS-LIA NIST RT 2003

Acoustic pre-segmentation

- Objectives
 - I To provide an acoustic pre-segmentation to speaker segmentation phase based on :
 - Speech / Non speech detection

 - Gender detection
- Approach
 - GMM model based
 - Viterbi decoding
 - I Hierarchical segmentation

Acoustic pre-segmentation

- Feature vector
 - 12 MFCC + E + Δ + Δ E + $\Delta\Delta$ + $\Delta\Delta$ E = 39 coef.
 - No CMS, Windows = 25ms, delay=10ms
- Acoustic modeling = GMM diagonal
 - Non speech : NS = 1 component
 - Wide speech
 - S: Gender indep. speech model = 1024 comp. (BN condition: F0 & F1)
 - SM: Gender indep. speech over music model = 1024 comp. (F3)
 - GS-Ma & GS-Fe: Gender dep. speech models = 2x128 comp. (F0 & F1)
 - GSM-Ma & GSM-Fe: Gender dep. speech over music models = 2x128 comp. (F3)
 - GDS-Ma & GDS-Fe: Gender dep. degraded speech models = 2x128 comp. (F4)
 - | MixS : merging of GS-Ma + GS-Fe + GDS-Ma + GDS-Fa = 512 comp.
 - Narrow speech
 - T : Gender indep. speech model = 1024 comp. (Telephone from F2)
 - GT-Ma & GT-Fe : Gender dep. speech models = 2x128 comp. (Telephone from F2)
 - Learned on a subset of BN 96 corpus
- Acoustic condition bi-gram probability learned on BN 96 corpus

Speaker segmentation LIA vs CLIPS

LIA system

- Parameterization
 - 20LFCC+E, no CMS, no bandlimiting
- "Segmentation a priori"
 - Every 0.3 s

Clustering

- descendant
- based on HMM
 - one state = one speaker
- uses background model
- LIA-MAP speaker adaptation

CLIPS system

- Parameterization
 - 16MFCC +E, no CMS, no bandlimiting
- Segmentation BIC + Acoustic Segmentation
 - Using 1.75 sec windows
- Hierarchical Clustering
 - ascendant
 - uses GLR as distance
 - uses a background model
 - MAP speaker adaptation

Speaker segmentation: LIA

- Background model (UBM)
 - Subset BN 96: F0 F1 F2 condition (wide and narrow)
 - No gender dep.
 - No band dep.
- LIA baseline (primary)
 - Speaker adaptation : LIA MAP (same as 1-speaker task)
 - Mean only
 - Dependent of model weights
- LIA MAP2
 - Speaker adaptation : linear MAP
 - I Mean only

111111111111111111111111111

Speaker change detection

Clustering

- One unique system
- Speaker change detection
 - BIC distance
 - 1.75 sec adjacent windows
 - mono-gaussian models with diagonal covariance matrix
 - Acoustic Segmentation

Clustering

- diagonal 32 GMM background model learned on the entire file
- MAP adaptation (means)
- Estimate the number of speaker

uses BIC maximization

ELISA-CLIPS-LIA NIST RT 2003

Estimate N: CLIPS

- The segmentation is done independently for each class given by the acoustic pre-segmentation
- Estimate the number of speakers using the BIC criterion
- Limit the number of speakers (N) between 1 and 25
- Select N that maximizes the BIC criterion

BIC (M)=log
$$L(X;M)-\lambda \frac{m}{2}N s_p \log N x$$

Algorithm developed with the help of I. Magrin-Chagnolleau at the DDL Laboratory in Lyon

ELISA collaboration

- Hybrid systems
 - I piped system
 - LCLIPS segmentation re-segmented by the LIA system
 - Merged system
 - ☐ Merging of 4 segmentations before LIA re-segmentation

ELISA collaboration: pipe

- Uses the results of one system to initialize the other
 - CLIPS segmentation piped in LIA re-segmentation system

ELISA-CLIPS-LIA NIST RT 2003

ELISA collaboration: merge

- Merging of 4 results resulting from LIA and CLIPS segmentations
 - Use both segmentations

 - I LIA MAP2
 - CLIPS (primary)
 - CLIPS piped LIA
- Merging: labels by frame are merged
 - ∥ Fy
 - T_0 : Sys1="S1", Sys2="T4", Sys3="S1", Sys4="F1" \rightarrow "S1T4S1F1"
 - T_1 : Sys1="**S2**", Sys2="T4", Sys3="S1", Sys4="F1" \rightarrow "**S2**T4S1F1"

Results

CLIPS (Primary)	19.25%
LIA MAP-LIA (Primary)	16.90%
LIA MAP-linear	24.71%
ELISA Merge (Primary)	14.24%
ELISA Pipe	12.88%

- The collaboration systems (ELISA) improved performance of starting systems
- The merged system gives the possibility to use multiple segmentation systems
- There is still a lot to gain of the acoustic presegmentation and the estimation of the number of speakers

ELISA-CLIPS-LIA NIST RT 2003

References and contacts

- ICASSP 2003, "The ELISA Consortium Approaches in Speaker Segmentation during The NIST 2002 Speaker Recognition Evaluation", D. Moraru, S. Meignier, L. Besacier, J.-F. Bonastre, I. Magrin-Chagnolleau
- Contacts:
 - daniel.moraru@imag.fr
 - sylvain.meignier@lia.univ-avignon.fr

